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SOLUTION OF BOUNDARY~-VALUE PROBLEMS OF
HEAT CONDUCTION FOR CYLINDRICAL REGIONS
WITH NONCIRCULAR BOUNDARIES

D. Ya, Byalik and Yu. I. Solov'ev UDC 536.24

We employ the principle of superposition to obtain the solution of stationary heat-conduction
problems for cylindrical regions with a noncircular boundary.

We consider the problem of the stationary temperature distribution in an infinite cylinder with a non-
circular contour

o =F(®), ' @)

where p, 6, and z are cylindrical coordinates (the z axis coincides with the axis of the cylinder). We assume the
cylinder contour to be convex and smooth [the derivative £'(9) is continuous]. The known surface temperature
is constant along the contour; along a generator of the cylinder it varies as cos nz.

Thus, we solve the following three-dimensional boundary-value problem of the theory of heat conduction:
Find a function u(p. 8, z) satisfying Laplace's equation

Au=10 ' @)
and the boundary condition
Uojoy =cCosnz (n=1, 2, . ..). )
To obtain such a solution we use the principle of superposition (see [1]). In the space of the coordinates

X, ¥, and z we select a new system of coordinates X, Y, and z, which depends on the parameter A and is de-
fined by the expressions

X = xcosh -+ ysink,
Y = —xsink + ycosh, @)

Z=27Z.
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In this variable coordinate system we obtain a solution of the following two-dimensional boundary-value

problem: find a function v(X, z), satisfying the equatlon
o? 02
=0 5
< axt T a2 ) ¢ ®)
in the infinite strip X = +a, subject to boundary conditions analogous to the conditions (3), namely,
U X—iaq = COSHZ. {(6)
Using the Fourier method, we readily find that
v(X, 2) = chnX €os Nz, 7)
and, taking Eqs. @) into account, we then have
(5, gy 1) = chn(xcosh 4 ysini) Cos 12, ®)
chna

For every value of the parameter A this function constitutes a solution of the three-dimensional Laplace equa-
tion (2) in Cartesian coordinates. Using the superposition principle (see [1]), we seek the solution of the prob-
lem (2}, (3) in the form of an integral, with respect to the parameter A, of the solution (7) of the two-dimen-
sional problem:

2n
u(x, y, 2) = cos nzftp(?»)v(x, Y, A)dA 9
b
or
u(x, y, z)__cos nzfw(l)chn(xcosl.—l—ysm/t)dh o)

It is readily seen that the expression (10) satisfies Eq. (2). In order to satisfy the boundary condition (3) we
rewrite Eq. (10) in cylindrical coordinates:

on

u(p, 8, 2) = cosnz fxp(k)ch[npcos(k—e) a1

[the unknown function ()) in this expression is coshna times less than the y(A) in Eq. (10)]. Substituting Eq.
(11) into Eq. (3), we obtain a Fredholm integral equation of the first kind in the unknown function; thus,

2n

{ ch[nf (6) cos (b — O p (W) dh = 1. 12)
. 0
We employ numerical methods to find the function #(A) [2]. We put

K8, 2} = chnf (8) cos (A —6)} 2 a,, €os 0 cos sk,

r,s=0
13)
1~2b cosrd, P(A) = Ec cosrh
r=>0
and obtain the unknown coefficients
5 cos r6do g‘ch [nf (8) cos (A — 0)] cos sAdA
]

0

~

wl*—'

ars =

2-’!:
= —j— cosrf (— 1)° cos( ) J, (nif (8)) cos sBdA. == (— 1)* cos ( \j‘ J; (nif (8)) cos rB cos s6df.
. 0
Here the factor cos (ns /2) is equal to zero when s is odd. Taking this fact into adccount, and taking note also

of the relationship between the Bessel functions of real and imaginary arguments, namely, Jg(iz) = iSIg()
(see [3]), we obtain
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an
a,, = 2 5 I (nf (8)) cos 8 cos s8dO
- .
[}

or
- 2k2 2k =
nt n2ko— ,
4. = 8)]24+S cos 7B cos n8do, 14)
= e f[f( ek
g
r=01,2,...,5s=02,4,....

As before, £(p) is the equation of the contour of the cylinder in cylindrical coordinates. Further, we have
by=1,6=0,r=1,2,.... 15)
Substituting Eqs. (13) into Eq. (12), we reduce the integral equation to an infinite system of linear equations in

the unknowns cg; for computational purposes™we replace this infinite system by the finite system

2m

2 aCs=0b,r=0,1,2,...,m 16)

s=0, 2, 4, ...

The coefficients cg obtained from the system (16) determine the unknown function (1), which determines, in
turn, through the expression (11), the temperature field inside the cylinder.

In the special case of a cylinder with a circular contour p = R, the method presented above leads to a
known solution in closed form. We have f{) = R. We put () = A and evaluate the integral on the left side of
Eq. (12):

2n

A { ch 7R cos (b —O)1 A,
0
which, after the substitutions A—8=1t, cost = ¢, becomes

]
oy @1}—’?—% = — 24al, (nR).
0

From this we find
o —1
2al,(nR) :

Substituting this value into Eq. (11), and again evaluating the same type of integral, we obtain

1, (ng)

cos nz,
1,(nR)

ulp, 6, 9 =
which is the same as the solution obtained by the method of separating the variables.

NOTATION

p, 6, z, cylindrical coordinates; u(p, 6, z), temperature at point (p, 6, z); v(X, z), infinite plate tempera-
ture; A, continuous parameter; Jg(nif@)), Bessel function of the s-th order; i =v—1;p =£(9), equation for a cylinder
contour; Ig(z), Bessel function of the s~-th order of imaginary argument; R, radius of a circular cylinder.
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